

Course E-Syllabus

1	Course title	Instrumental Pharmaceutical Analysis		
2	Course number	1201315		
2	Credit hours	2 theory and a separate 1 hr practical course		
3	Contact hours (theory, practical)	2 theory and a separate 3 hr practical course per week		
4	Prerequisites/corequisites	Chemical pharmaceutical Analysis 1201201		
5	Program title	BSc Pharmacy, Pharm D		
6	Program code			
7	Awarding institution	The University of Jordan		
8	School	Pharmacy		
9	Department	Pharmaceutical Sciences		
10	Level of course	Intermediate, 3 rd year students		
11	Year of study and semester (s)	First Semester, Academic Year 2021-2022		
12	Final Qualification	Bsc in Pharmacy, Pharm D		
13	Other department (s) involved in teaching the course	NA		
14	Language of Instruction	English		
15	Teaching methodology	□Blended ⊠On Campus + Online		
16	Electronic platform(s)	⊠Moodle ⊠Microsoft Teams □Skype □Zoom □Others		
17	Date of production/revision	10 th October 2021		

18 Course Coordinator:

Name: Dr. Lina Dahabiyeh

Office number: 327

Phone number: + 962 65355000 (23306)

Email: <u>L.dahabiyeh@ju.edu.jo</u>

Office Hours: Sun/Tue (9:30-10:30). Mon/Wed (9:00-10:30)

19 Other instructors:

3.7			
Name: NA			
I valific. I vit			

20 Course Description:

As stated in the approved study plan.

The course is about understanding the merits of different instrumental analytical techniques and how they might be employed to analyze drugs in bulk raw material, dosage forms (mainly) and in other matrices (such as plasma). The course will cover;

- A. Basic concepts of instrumental techniques of analysis
 - 1- The theoretical principles behind each instrumental technique will be discussed
 - 2- Details of how to employ the techniques for practical applied case of drug analysis as in pharmaceutical manufacturers or clinical trials.
- B. Development and evaluation of analytical methods
 - 1. Choice of the proper method of identification
 - 2. Compare and contrasts between different spectroscopic techniques in identification and structure elucidation of unknowns.
 - 3. Evaluate and criticize published analytical methods based on instrumental techniques.

21 Course aims and outcomes:

A- Aims:

The course aims to accomplish the following goals:

- 1. To provide students with sufficient knowledge regarding the employed instrumental analytical methodologies.
- 2. To provide students with a solid background in principles of pharmaceutical analysis.
- 3. To introduce students to a wide range of instrumental analytical techniques that are useful in modern pharmaceutical analysis, some of which they will gain hands on experience in the practical sessions accompanying the course.
- 4. To develop skills necessary to solve analytical problems related to instrumental techniques.

B- Intended Learning Outcomes (ILOs):

Upon successful completion of this course students will be able to

Develop, integrate, and apply knowledge from the foundational pharmaceutical sciences in separation, quantification and identification techniques (learner)

- 1. Define knowledge related to different instrumental techniques used for qualitative and quantitative analysis and separation
- 2. Recall basic calculations associated with the quantitative analysis of drugs based on instrumentations
- 3. Explain the mechanisms by which different instrumental techniques work and how they are utilized to analyze drug substances
- 4. Understand the main uses of the various analytical instruments.
- 5. Recognize the different techniques in terms of suitability for particular analytical problem and Choose a proper analytical method for the quantitative or qualitative analysis of certain drug in certain media
- 6. Interpret basic IR and NMR spectra and chromatogram for simple compounds
- 7. Apply the gained knowledge of different analytical methods for purpose of drug identification and assay

Exhibit behaviors and values that are consistent with the trust given to the profession by patients, other healthcare providers, and society (Professional)

- 8. Demonstrate integrity by not cheating and not committing plagiarism
- 9. Demonstrate respect to professors and classmates by observing active listening inside the classroom

22. Topic Outline and Schedule:

Week	Lecture	Topic	Teaching	Evaluation	References
		•	Methods*/platform	Methods**	
1	1.1	Basics of Analytical	Synchronous lecturing	Quiz, Exam	1 and 2
		Chemistry	(On campus, MS teams)		
	1.2	Introduction to	Synchronous lecturing	Quiz, Exam	1 and 2
		spectroscopy	(On campus, MS teams)		
2	2.1	Atomic Spectroscopy	Synchronous lecturing	Quiz, Exam	1, 2, 3 and
			(On campus, MS teams)		4
	2.2	Atomic Spectroscopy	Synchronous lecturing	Quiz, Exam	1, 2, 3 and
			(On campus, MS teams)		4
3	3.1	Molecular Spectroscopy	Synchronous lecturing	Exam	1 and 2
		(UV-Vis Spectroscopy)	(On campus, MS teams)		
		Theory and Principle			
	3.2	Absorption Shifts	Synchronous lecturing	Exam	1 and 2
			(On campus, MS teams)		
4	4.1	Beer's Lambert Law	Synchronous lecturing	Exam	1 and 2
			(On campus, MS teams)		
	4.2	Spectrophotometric	Synchronous lecturing	Exam	1 and 2
		Mixture Analysis	(On campus, MS teams)		
5	5.1	UV-Vis Instrumentation	Synchronous lecturing	Exam	1 and 2
			(On campus, MS teams)		
	5.2	Molecular Emission	Synchronous lecturing	Exam	1, 2 and 4
		Spectroscopy	(On campus, MS teams)		
6	6.1	Molecular Mass	Synchronous lecturing	Exam	1, 2, 3
		Spectrometry (MS)	(On campus, MS teams)		
	6.2	Molecular Mass	Synchronous lecturing	Exam	1, 2, 3
		Spectrometry (MS)	(On campus, MS teams)		
7	7.1	Infra-red Spectroscopy	Synchronous lecturing	Exam, Assignment	1
		(Principles, Origin of IR	(On campus, MS teams)		
	7.2	bands, Modes of vibration			
	7.2	Infra-red Spectroscopy (IR	Synchronous lecturing	Exam, Case Study	1
0	0.1	spectrum interpretation)	(On campus, MS teams)		4
8	8.1	Application in the use of	Synchronous lecturing	Exam, Case Study	1
	0.2	IR for structure elucidation	(On campus, MS teams)	G.10 !!	1
	8.2	Instrumentation and	Asynchronous lecturing-	Self-reading	1
0	0.1	sample preparation	E-learning	Material	2
9	9.1	Raman Spectroscopy	Asynchronous lecturing,	Exam	2
		(Principles and Origen of	E-learning		
	0.2	bands)	Cynobronous la-ti	Evom	2
	9.2	Raman Spectroscopy	Synchronous lecturing (On campus, MS teams)	Exam	2
10	10.1	(Application) NMR Spectroscopy-1	Synchronous lecturing	Evam	1
10	10.1	(Principles, Introduction to	(On campus, MS teams)	Exam	1
		theory of NMR, origin of	(On campus, wis teams)		
		NMR signal)			
	10.2	NMR Spectroscopy-1	Synchronous lecturing	Exam, Case Study	1 and 2
	10.2	(Chemical shift)	(On campus, MS teams)	Zam, Case Study	1 and 2
11	11.1	NMR Spectroscopy-Part 2	Synchronous lecturing	Exam, Assignment	1 and 2
		Interpretation of NMR	(On campus, MS teams)	Lam, Assignment	1 and 2
		spectra	(311 - 1111)		
	11.2	NMR Spectroscopy-Part 2	Synchronous lecturing	Exam, Assignment	1 and 2
		Interpretation of NMR	(On campus, MS teams)	Lauri, rissignificili	1 mid 2
		spectra	(
12	12.1	Carbon NMR and	Synchronous lecturing	Exam, Case Study	1 and 2
	12.1	Instrumentation	(On campus, MS teams)	Zhain, Case Stady	1 and 2

	12.2	NMR interpretation	Synchronous lecturing	Exam, Case Study	1 and 2
		(examples)	(On campus, MS teams)		
13	13.1	Introduction to	Synchronous lecturing	Exam	1
		chromatography	(On campus, MS teams)		
	13.2	TLC	Synchronous lecturing	Exam	1
			(On campus, MS teams)		
14	14.1	GC	Synchronous lecturing	Exam	1
			(On campus, MS teams)		
	14.2	HPLC (principle and	Synchronous lecturing	Exam	1
		theory)	(On campus, MS teams)		
15	15.1	HPLC (instrumentation	Synchronous lecturing	Exam	1
		and optimization)	(On campus, MS teams)		
	15.2	Chromatography revision	Synchronous lecturing	Exam	1
			(On campus, MS teams)		

- Teaching methods include: Synchronous lecturing/meeting
- Evaluation methods include: Homework, Quiz, Exam,

23 Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	Period (Week)	Platform
Quiz	10 M	Weeks 1, 2 and 3	Week 4-5	Online (LM system)
Assignment	10 M	NMR and IR spectroscopy	Week 11	Online (LM system)
Midterm Exam	30 M	Weeks 1-7	Week 8	On Campus or LM system
Final Exam	50 M	All given Material	Week 16	On Campus or LM system

24 Course Requirements (e.g. students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

Students should have a computer, internet connection and an account on MS teams

25 Course Policies:

A- Attendance policies:

According to the University Regulations

Attendance: Mandatory.

First warning – with 4 absences Last warning – with 5 absences

Failing in the subject – with 6 absences

B- Absences from exams and handing in assignments on time:

Will result in zero achievement unless health report or other significant excuse is documented.

C- Health and safety procedures: NA

D- Honesty policy regarding cheating, plagiarism, misbehavior:

The participation, the commitment of cheating will lead to applying all following penalties together

- 1) Failing the subject he/she cheated at
- 2) Failing the other subjects taken in the same course
- 3) Not allowed to register for the next semester. The summer semester is not considered as a semester
- E- Grading policy:

Semester Works 20 Marks (Quiz (10), Assignments (10))

Midterm Exam 30 Marks Final Exam 50 Marks Total 100 Marks

F- Available university services that support achievement in the course:

An account on MS teams, library, internet connection, E-Learning, smart board

26 References:

A- Required book (s), assigned reading and audio-visuals:

*Textbook:

- 1) Pharmaceutical Analysis; A Textbook for Pharmacy Students and Pharmaceutical Chemists by David Watson 2016.
- 2) Douglas A. Skoog, F James Holler and Stanley Crouch (2007) Principles of Instrumental Analysis. 6th Edition or later.

B- Recommended books, materials, and media:

- 3- Roger E. Schirmer (Editor) Modern methods of Pharmaceutical Analysis, 1982
- 4- Kenth A. Connors, A text book of Pharmaceutical Analysis, 1982

27 Additional information:

Name of Course Coordinator: Lina Dahabiyeh	Signature:	- Em	Date: 10/10/2021	
Head of Curriculum Committee/Department:		Sign	ature:	
Head of Department:		Si	gnature:	
Head of Curriculum Committee/Faculty:			- Signature:	
Dean:	Signati	ıre:		